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ADVANCED CONTROL OF ETHYLENE PLANTS
WHAT WORKS, WHAT DOESN’T, WHY?

The complexity of ethylene plant operation makes it a good candidate for advanced
process control (APC). Production starts with a battery of high temperature cracking
furnaces, followed by distillation columns for separating the reactor effluent. The
furnaces operate at low pressure and high temperature, whereas the reaction
products are light hydrocarbons whose separation calls for high pressures and low
temperatures. Thus, process and refrigeration compressors, with their many
constraints, complicate plant operation. Further, the furnaces gradually foul up, lose
capacity, and periodically are shut down for cleaning. That semi continuous feature
prevents the plant from ever reaching steady operation.

The APC first challenge is to operate this never-at-steady-state, sensitive equipment,
correctly, as the feed of the day and degree of furnace fouling dictate. Penalties for
incorrect operation are premature fouling of furnaces and olefin yield reduction. Once
the first challenge is met, a second challenge is to maximize the use of certain feeds
while respecting plant constraints. These objectives call for the following APC
functionality.

* Cracking furnace control.

Control the furnace severity precisely to avoid over or under cracking. Overcracking
results in accelerated fouling whereas undercracking results in a loss of
production.

¢ Distillation column control.

Maximize olefin recovery. Incorrect distillation control results in loss of ethylene
and propylene yield, and in recycling olefins to the furnaces, which accelerates
furnace fouling.

¢ Constraint control.

Increase throughput of selected feeds up to equipment constraints. Constraints
could be anywhere in the plant: furnace, compression, refrigeration, fractionation
or hydraulic. Bottleneck locations vary with plant feed, number of furnaces in
operation, weather and other causes.

(Nudging the throughput towards constraints causes self-inflicted disturbances,
on top of the semi continuous furnace disturbances.)

* Economic optimization.
Maximize the overall profit of the plant. This involves not simply feed selection but

trading off feed selection, reaction severity and product recovery targets against
equipment constraints.
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The main point of this paper is that the first two applications: cracking severity control
and distillation control, require complex steady state and dynamic models with many
uncertainties. Model imprecision affects how well we control the furnaces and
distillation columns, and even more profoundly it affects our ability to perform the third
and forth applications: run the plant near its constraints, and automatically optimize
plant conditions and feed selection. Our current state of knowledge is so poor that we
miss half of the incentives of throughput maximization. The remaining half still
justifies the constraint control application, but that is not true for closed loop
optimization. We simply do not have the kind of model precision required for closed
loop optimization.

This being the case, perhaps we should concentrate on ways to improve our
modeling techniques as opposed to installing closed loop optimizers.

CRACKING SEVERITY CONTROL IS THE MOST IMPORTANT APC APPLICATION

Ethylene cracker most important APC application is reaction severity control. The
application manipulates furnace firing and to a lesser extent coil steam injection, to
keep the extent of reaction constant without over or under cracking. The benefits of
maintaining cracking severity at target are obvious:
= Protecting against over-cracking increases the furnace run length.
=> Protecting against under-cracking increases production efficiency of the entire
plant.
= Keeping the furnace severity constant facilitates a stable operation of the
fractionation train.

From the operator’s point of view a good severity controller is worth its weight in gold.
Without the severity control sophistication, keeping conversion high while protecting
against overcracking is difficult. The operator would be forced to keep the feed steady,
and even then there is no good way to cope with semi continuous furnaces. As
gradual fouling proceeds, cracking severity changes even without a change of the
cracking temperature.

In addition to the desire to operate the furnace correctly, our ultimate goal is to
maximize throughput and optimize feedstock selection and severity. Good severity
control keeps the cracking furnace under control while feed is ramped up or down.
Poor severity control would render throughput maximization useless. Trade off logic
between throughput and severity would fail; incorrect yield predictions would cause
distillation columns to flood and products to be off purity specifications; overcracking
would cause premature furnace shutdown, taking with it years’ worth of APC benefits.
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SEVERITY CONTROL REQUIRES BOTH A CRACKING MODEL AND TRANSFER LINE
ANALYZERS

Severity is defined in several ways, depending on the nature of furnace feed. With
ethane or propane feed, severity is simply the extent of conversion. With heavier feeds
severity is defined as the ratio of methane to propane in the transfer line. Either way,
the application must estimate furnace outlet composition. To some extent onstream
analyzers can measure the transfer line compositions, yet analyzers are shared
among several furnaces and that slows down the readings to once per hour, too slow
for effective control. A model of the cracking process is necessary to make severity
control successful.

For effective control the severity model must predict a change of composition as a
function of steps in manipulated or disturbance variables: COT, coil steam, feed
composition, coil flow, pressure and others. That requires a rigorous kinetic model of
the reaction; not an easy task because each furnace is different in geometry, feed
composition, and degree of coking, which calls for one severity controller per furnace.

Are rigorous kinetic models available? Many plants have kinetic cracking models for
simple feeds: C2, C3 and sometimes C4. The composition of heavier feeds is so
uncertain that our ability to validate models against production data is in question.
The best models that companies have succeeded in developing for naphtha feeds
are regression models with a fair degree of fidelity.

And even if we could develop perfect models, the models cannot be expected to
precisely predict transfer line composition because:
= Feed composition is never fully known.
= Calculated residence times are off due to flow (and other) measurement
errors.
= Uneven distribution of feed in the coils.
= With varying degree of fouling it is impossible to estimate the precise
temperature, nor pressure profile of each furnace coil.

Are such model imperfections fatal? Figure 1 shows how severity controllers could
work in spite of model imprecision. Once an hour the transfer line analyzer comes up
with actual severity measurement. Then the application reconciles the yield model
against analyzer readings. We have a chance to re-calibrate the models, factoring out
the uncertainties. That would permit the application to work in spite of our less than
perfect models.

Reconciliation logic is key to the success of analyzer feedback. The object of such
feedback is not to simply bias the model but to come up with correct model gains:
Delta Yields per Delta Manipulation (of feed, steam, COT, etc). The reconciliation
rules must adjust a-priori assumptions affecting model gains to ensure model fidelity.

What works in ethylene plant APC, Page 4



SEVERITY MODEL RE-CALIBRATION ISSUES

Being a consultant, | had the opportunity to audit a number of APC systems, and we
found that in these plants cracking model reconciliation was a secretive custom logic.
We would put up with that, recognizing the need for vendors to protect their technology,
if only analyzer feedback correctly re-calibrated the model gains. But what we have
seen was disappointing. The logic invariably failed to adjust:

= Feed quality assumptions: H/C ratio and molecular weight.

= Degree of fouling, and its affect on residence time and yields.

=> Coil mal-distribution assumption (perfect distribution is usually assumed).

As a result, model gains were off by about 25%.

Can such technology perform the severity control task? How would model inaccuracy
affect the APC application? As it turns out, model imprecision affects the application
in three important ways:
= |t forces de-tuning of the application. IE, the controller can perform severity
control with an inaccurate yield model, but only if throughput adjustments are
gradual. That gives the application more time, without straying too far, until the
next analyzer reading becomes available.
= We lose the ability to compare model against analyzer, and reject the latter if
the discrepancy is high. We have to accept that occasionally, due to an
analyzer drift, the control actions would be completely wrong. (We can normally
catch abrupt analyzer errors, but not a slow drift).
= |n the face of modeling doubts we would do well to tone down our ambition to
operate just below hard constraints. Knowing that constraint targets would be
exceeded, we must specify soft constrains as operating limits.

OTHER ISSUES AFFECTING CRACKING MODEL ACCURACY

Besides model inaccuracies, there are two other common problems: analyzer
reliability and erroneous instrument readings.

* Analyzer reliability

Analyzers are expensive to buy and maintain, and are notoriously unreliable. To
cut costs one analyzer would be shared among several furnaces. That implies
automatic switching of many valves, timed correctly to permit sampling and
analysis of each transfer line. Any one of the valves may leak or get stuck, and the
analyzer would then give misleading readings.

Another problem of sharing analyzers is the wide range of possible compositions
from all furnaces. The analyzers are GC types, and their calibration is tied to the
expected composition. A wide range of composition detracts from the analyzer
accuracy.
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¢ Erroneous instruments

Model failures are frequently caused by erroneous instrument readings: orifice
meters, thermocouples or pressure gauges. This type of failure is common
because of the number of readings required by the model: about twenty
measurements around the furnace. When reading so many inputs, the likelihood
of one or more of them being wrong is high, especially in a coking, high
temperature environment. Once a major input is wrong, no amount of kinetic
sophistication would help. Yield predictions would be completely off.

Quality APC applications subject analyzer readings as well as all model inputs to
checking logic, to trap large errors such as an unexpected jump in readings, but small
errors or drifts are not easy to test for. The only remedy we know for this problem is a
better severity model, where model and analyzer can be checked against each other.

DISTILLATION CONTROL MAXIMIZES PRODUCT RECOVERIES

We leave now the cracking control problem and move to product separation. Ethylene
crackers separate the reactor effluent via a long distillation train: fractionator,
demethanizer, deethanizer, depropanizer, ethylene splitter, and propylene splitter, to
name a few columns. The columns feed each other and every disturbance in plant
feed or furnace slowly passes through the train. Each one of the columns can create
additional disturbances coming from their cooling or heating systems. Complicates
the distillation operation is the fact that the plant is never at steady state, and that the
severity application cannot precisely control reactor effluent composition.

Distillation APC applications manipulate column product draw rates and reflux (or
reboiler) aiming to keep olefin products at target specifications, while maximizing their
recovery. The benefits of this control application are:

= Increased recovery of ethylene and propylene.

= Reduced olefin recycle to cracking furnaces, thus increasing run lengths.

Without advanced distillation control operators would be forced to cut down olefin
recovery rates as a way to keep product purities within specification. This is not a very
satisfactory solution. To minimize recycling of olefins, the operator would try to keep
the plant as steady as possible, hindering our ability to vary the plant feed and
maximize throughput.

A typical two-product distillation control problem is shown in figure 2. Column feed,
as well as each of the products, could contain several components. There are two
manipulated variables: Product draw and reboiler heat duty. There may be onstream
analyzers for measuring product compositions continuously, or - the laboratory may
take measurements periodically. The column may have one or more tray temperature
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measurements. Column feed comes in from another piece of equipment, often an
upstream distillation column.

The distillation control application must find a way to set reboiler heat duty and top
product draw such that product compositions are steady at targets. This is a difficult
control problem for a number of reasons:

=> Interactions between the top and bottom purities.

= Slow dynamics of the columns, measurable in hours.

= Nonlinear dynamic behavior, which changes with plant conditions.

=> Changing feed composition and flow makes distillation control a moving target.

Nowadays industry handles distillation control by multi-variable predictive control
(MVPC) technology, which applies linear dynamic models for predictive control and
decoupling in one algorithm, though this is only a partial solution. MVPC can deal
with column constraints and analyzer feedback simultaneously, but this approach
leaves out two significant issues: inferential feedforward and nonlinearity. These will
be addressed in the following two sections.

SLOW ANALYZER NECESSITATES INFERENTIAL FEEDFORWARD

Distillation control that relies solely on analyzer feedback would have difficulties
dealing with feed composition disturbances. A typical analyzer on a high reflux
column responds in two hours to manipulation of distillate draw. The response to
feed composition changes would be in the order of three hours. Such slow response
makes analyzer feedback by itself ineffective. The controller would be oblivious to a
feed composition disturbance for a number of hours; then it would respond by
correcting the distillate draw. With the aid of a perfect dynamic model, product purities
would come back to targets five hours after the disturbance had occurred. More
realistically, such a disturbance might linger for over a shift. Throughout that shift,
either product purities would be off specification, or olefins circulated to the furnaces.

Furthermore, most columns do not have a full set of analyzers. APC of such columns
does not have a feedback option. The challenge here is to provide accurate control
without relying on analyzers. If that is not possible the operator must resort to
laboratory tests. |E, operation of the plant at steady state; then taking samples; then
correcting column conditions; more steady state, more samples, etc. Our ability to
maximize throughput would be completely lost.

How can distillation column control facilitate throughput maximization and cope with
furnace start / stop disturbances? Inferential control is the only way. Inferential control
models rely on column temperatures and other measurements, which quickly change
in response to feed composition disturbances, thus providing information for the
controller to counteract disturbances as they occur, instead of hours later.
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ENGINEERING MODELS VERSUS REGRESSION MODELS

Industry has employed two kinds of inferential models: process engineering based
models and regression analysis based models. While first principles engineering
models are more difficult to develop, their performance in the field is superior. Our
APC audits have encountered many failures of regression based inferential models,
and almost no successes. We include in this assessment neural net packages,
which also contain a regression analysis machine. The only models we have seen
working, after the implementers had left the site are first principle models.

We would like to address this wide spread failure of regression models, because
they still enjoy an undeserved degree of popularity. Their lack of success stems from
several insurmountable fundamental problems.

A) Regression models require large volumes of lab data.
The vast amounts of data needed to develop a statistical correlation cannot come
from high quality test run data, and the regression machine must input every-day
lab data. Commonly, a small percentage of the data is directionally biased, and
then there is no possibility that the resulting correlation would be reliable.

B) Much of the time units work to a fixed product quality.
Normal day-to-day operation doesn’t provide enough movement in the data to give
meaningful information. We all know how to conduct factorial designs for reliable
regression. The common ways of developing regression based inferential
models is in conflict with factorial design theory.

C) There is no replacement for chemical engineering.
Regression or not, the measurements must still be in a correct location to “have
the information in them”. First principle models cannot be developed based on
incorrect set of instruments; a sensitivity analysis would reveal any inadequacy of
the input set of measurements. But there is no such restriction on regression
models. Ignoring the need for process engineering analysis replaces knowledge
by luck, and cannot be very successful.

D) Regression requires independent inputs.
Regression theory requires all inputs to be independent. That is not possible with
normally measured process data. For example temperature measurements on a
distillation column typically all go up or down together. Correlating dependent
input data puts the model validity in question.

E) Engineering models provide the means for checking instrument errors.
Given incorrect input data, the engineering model simply cannot give a reasonable
result, and it would show a discrepancy between model and lab test to highlight
the errors. On the other hand regression models do not discriminate between
good and bad data.
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Friedman (1) and Kesler - Friedman (2) detail two examples of first principle models.
The former is based on process engineering shortcut methods, whereas the latter is
a rigorous tray-to-tray model. Both approaches address the problem of identifying
feed composition changes, and correcting column reflux and product draw to keep the
product purity constant.

DYNAMIC NONLINEARITIES FORCE CONTROLLER DE-TUNING

MVPC'’s are sensitive to the accuracy of their dynamic models. They work well when
models agree with actual plant responses. On the other hand, distillation processes
are nonlinear, changing their steady state gains and dynamic behavior with operating
conditions. These are not small changes. Ethylene versus propylene yields is
dictated by choice of feed and severity, and the ratio of these two products may vary by
a factor of two. MVPC controllers with fixed dynamic models must be de-tuned to cope
with varying real dynamics. Detuning makes the controllers sluggish and the APC
application can no longer move quickly and gracefully near constraints.

What can be done to reduce the effect of nonlinear controller behavior? There are
accepted conventions for linearizing the steady state part of the distillation model via
variable transformation. As an example controllers can use not the composition itself
but a logarithm of composition. In the same way output transformation can factor out
the effect of nonlinear valve behavior.

But these steady state transformations cannot deal with dynamic effects of changing
composition. Control engineers have argued with us that in an industrial setting the
dynamic variations are not substantial enough to attempt a solution to this problem.
We do agree that other problems do carry higher priority and urgency, but as we name
all of the problems we encounter in ethylene plant control, this is one of them.

Perhaps we have come to put up with detuning of distillation controllers as a way of
life, but one should remember that control is slowed down not to cope with the
average model but to cope with the worst model, and this is often too slow. Slow
control forces operators to reduce olefin recovery targets and permit some recycle of
olefins to the furnaces. Take for example an ethylene splitter. What should be the
content of ethylene in ethane? Ideally perhaps 1%, but in practice the operator may
set the target up to 3% to protect the more important ethylene product at the top of this
column. How else could the operator keep the ethylene product from going off spec
as yield and throughput drift, the prediction of those drifts lacks accuracy, and control
actions to correct the column operation are too slow?

Recently there has been a trend of relying on larger MVPC’s, combining several
columns into one control problem. In our own experience this forces even more de-
tuning than necessary, to cope with the least accurate model of possibly a not so
important column. Some knowledgeable voices inside vendor companies do not
agree with the large MVPC trend (7), but their influence so far has been minimal.
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Is there a way to automatically adjust the dynamic control model of the MVPC
controller and avoid de-tuning? To do that the control application must estimate gains
and dynamics of the response, and change the MVPC model “on the fly”. Not all
MVPC software products can take model changes while at the same time continuing
to manipulate the control handles, but some do. Of the two references discussed
above, the Friedman method (1) permits accurate calculation of model steady state
gains. Just changing the MVPC gains improves the closed loop response
dramatically. The Kesler — Friedman approach (2) affords an even better solution,
applying rigorous tray-to-tray dynamic simulation to estimate the complete dynamic
model.

INSTRUMENT AND ANALYZER RELIABILITY ISSUES

As in the case of modeling the cracking severity, erroneous instrument readings
adversely affect distillation control. Inferential calculations, which typically input dozen
or more readings, may fail with any incorrect input. If we combine the number of
readings required by all inferential calculations, the likelihood of one or more of them
being wrong is high. The only way to deal with this issue is by additional logic for
checking the input signals on two levels; first by comparing individual measurements
against reasonable engineering and velocity limits; then by checking patterns of
measurements.

Regarding analyzers, most MVPC’s operate under the assumption that analyzer
readings are more accurate than inferential calculations. They bias the inferential
model to force long-term agreement between model and analyzer. That is not
necessarily a correct approach. Analyzers can fail in undetectable ways such as
drifting slowly. When constructing logic to check patterns of measurements, analyzer
readings should be a part of the pattern.

To our knowledge only the Kesler - Friedman approach (2) compares instrument
reading patterns against a rigorous tray-to-tray model. The inferential method works
by comparing key instrument and analyzer readings against a rigorous model
prediction with an assumed feed composition. To the extent that there is a
discrepancy, the inference logic adjusts column feed composition to improve the
agreement until it finds the most probable feed (and product) compositions. Outlier
instrument or analyzer readings, which cannot be explained by modifying the
assumed feed composition, are taken out of the inferential formulae and ignored.

We have not seen an equivalent approach anywhere in the plants we audited, and our
suspicion is that pattern checking is simply not done.
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THE INFLUENCE OF INACCURATE MODELS ON THROUGHPUT MAXIMIATION

Constraint control is a technique for nudging a manipulated variable, in our case
usually a pre-selected feed, until bottleneck equipment is at its constraint. Itis a form
of optimization, except in the industry jargon “optimization” means the use of steady
state simulation and economic models, running once every several hours. We deal
with such form of optimization in the following section. Constraint control relies on
dynamic models and it runs every two or three minutes. The controller can have more
than one manipulated variable, for example several furnace feeds and/or furnace
severities, with priority logic as to which one is to be manipulated first, but the logic is
simple and does not automatically conform to market economics.

Feed changes influence the plant over time, from minutes on the furnaces to hours on
distillation columns. To avoid overshooting constraints we employ dynamic models,
describing the effect of severity and feed changes on columns and compressors. The
ideal constraint controller would detect any situation leading to future violation of
constraints, and take action, modifying throughput or severity to gracefully approach
the constraint instead of violating it.

That necessitates first good steady state predictions: cracking yield models and
inferential distillation models. Second, reasonable dynamic models to time the
constraint loading and relieving actions. We have discussed the difficulties of
obtaining such models. Severity models are only approximate, with model gain errors
of about 25%. Distillation inferential models are problematic industry wide, and
distillation dynamic models are usually empirical and not corrected for real operating
conditions. Upon making a feed change to any of the furnaces we would be lucky to
predict its effect on cold section constraints to £ 30% accuracy.

What are the consequences of inaccurate models? Being in danger of overshooting
the constraints, we must protect plant equipment in two ways:
= De-tuning the application, allowing only gradual throughput adjustments. That
slows down the speed of approaching constraints, and gives the model more
chance to correct itself by feedback, and reduce the inaccuracy from 30 to about
10%. The model is still incorrect and overshooting would occur, but not by
much.
= Slowing down feed manipulation affects the applications ability to quickly cut
down feed to relieve constraints. We accept that the relieving action would
operate slowly and in the mean time constraints would be violated. If the plant
were at steady state we could, to some extent, overlook the slow response and
inferential model inaccuracy, but in ethylene plants, operators cope with slow
response and inaccurate feed forward by setting conservative constraint
targets.

An operator can operate the never-constant olefin plant at possibly 90% of ultimate
throughput, whereas a perfect constraint control application could perhaps hold the
plant at 96% of ultimate throughput. We estimate that a perfect application could only
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reach 96% because of the unsteady nature of the plant and because instruments and
analyzer would continue to occasionally fail. In financial terms, that incentive of 6%
throughput increase is very large, giving the plant more capacity with minimal
investment. However the 30% prediction errors precludes us from taking advantage
of the full potential of the application. The de-tuned application, working to meet a
reduced set of constraints, could reach only about 93% of the ultimate plant capacity.
Half the benefits are lost because of model imprecision.

While the increase of 3% capacity handsomely justifies a throughput maximization

application, we would do well to try to improve severity and distillation modeling to
approach the potential value of 6%.

MORE ON THE ETHYLENE PRODUCTION OPTIMIZATION PROBLEM

Ethylene plants typically receive several feeds. Certain feeds are economically more
attractive because they produce a more desirable product pattern. The feed allocation
economy calls for consuming first all the inflexible feeds, then the most economical
feeds, and then “swing” feeds. One or more swing feeds are to be maximized,
subject to furnace or separation constraints. These constraints can be traded off
however. Altering severity, selectivity or feed selection can modify furnace or
downstream equipment loads. Choice of feed or severity also affects furnace fouling
and run length, which is of course an important factor in determining the average plant
throughput. Further, in the separation section, reducing reflux and accepting lower
recoveries of certain products can relieve distillation or compressor constraints.

On paper — optimization of the ethylene plant in closed loop is attractive, but in practice
solving the feed allocation problem in closed loop has not been very successful.
Having witnessed a number of failures in this field | published a paper (3), discussing
the problems and what it takes to make optimization work. While modeling problems
reduce our ability to maximize feed against constraints, the incentives are not
completely wiped out. But in the case of closed loop optimization, the technology is
simply not here yet. In response to my paper, other authors (4, 5 and 6) have begun to
address the difficulties of applying real time optimizers. Following are three of the
main reasons for failing to achieve the promised financial benefits.

* Modeling difficulties

Optimization of feed allocation and production requires a detailed simulation of the
entire plant, including all furnaces, heat exchangers, distillation columns,
compressors, certain pumps, etc. This simulation, in addition to predicting very
accurately the result of any process change, must automatically adapt to the
equipment configuration and economics of the day. We have discussed how
difficult it is to construct a cracking model to cope with unknowns such as feed
composition, precise coil temperature profile and mal-distribution of feed among
the coils. Plant wide optimization is much more difficult because the simulation is
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much larger than one furnace, and accuracy requirements are more stringent.
Cracking severity controllers would achieve excellent results with prediction
inaccuracy of 10%, but optimization routines, which rely on first and second
derivatives, would be misled into giving the wrong result. The accuracy required
for mathematical optimization is in the order of +2%, which does not seem
feasible.

* Furnace run length prediction

We single out the furnace run length prediction because it is not needed for
severity control, and was not addressed in our discussion of cracking model
difficulties. One of the most difficult values to predict and verify is furnace fouling
rate. Also, one of the most important optimization parameters is furnace fouling
rate. It is important because throughput increases may, through distillation
constraints, cause an increase of olefins in furnace feed, and shortening of
furnace run length. If that shortening is insignificant, throughput increases are
justified, but if run length shortening is substantial, the throughput increase
becomes very temporary, and in fact on average it would be a throughput
reduction. In the author’s opinion we do not have enough precision in our models
to distinguish between these two cases and are in danger of implementing a
counterproductive application.

» Steady state models in a dynamic environment

Before optimization takes place any model must be reconciled against current
plant measurements. The reconciliation process involves changing certain a-
priori assumptions to re-calibrate the model on-line. Reconciliation is a very basic
requirement, because optimization cannot begin before model and instruments
are in agreement, or at least the reason for disagreement is known.

Present day optimization models are based on steady state simulation whereas
the measurement data is dynamic. Tests are employed to check for steady state
conditions, but as we discussed, ethylene plants are never at steady state. We
can only test for “approximate” steady state and there is a danger of again
misleading the optimizer. The only way to obtain a set of steady state
measurements is via dynamic models for predicting the ultimate steady state
value of measurements, but even then, our ability to come up with dynamic models
of the required accuracy is questionable.

Can we ignore the three issues above and still go ahead with an optimization
program? Judging by the number of persons who claim to have succeeded in this
task — yes. Judging by the theoretical difficulties expressed in this paper — no. One
can always solve a mathematical set-up and come up with a set of numbers, but
proving that those numbers actually improve the plant economics is another matter.
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What then is a practical way to optimize the production? In our opinion it is best to
simplify the problem by pre-selecting trade-offs. Determine optimal severities, olefin
recovery targets and swing feeds. Then apply constraint control techniques to
maximize the swing feeds against constraints. The plant scheduler, after consultation
with engineers, maintenance supervisor, operations supervisor, and possibly a
simulation program, would make the trade-off decisions.

What have we gained by moving the optimizer from the closed loop environment into
the off-line environment of the scheduler?
= Money, about $3,000,000 for not setting up such a complex application.
= Manpower, two engineers who would be dedicated to keep the models and
economics updated.
=> Scheduler control of decisions that are not simply mathematical but also
depend on equipment conditions, maintenance schedule, furnace cleaning
schedule, etc.
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Fig. 2. Distillation control example
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Distillation control problem
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What is an inferential model?
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