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ABSTRACT

This paper discusses the technical feasibility, practical utility, sufficient accuracy, and economic
viability of property predictors engineered using datamining software.  Model types include empirical
models based on neural networks, physical models from engineering equations, and hybrid
combinations of both.  Simple guidelines are presented to determine where an empirical property
predictor will work and where it will not.  Several field examples are included, with deployment times
ranging from two to four man weeks and installed accuracies approaching that of the lab.
ROIs of less than six months are calculated.  A rollout program is described where a U.S.
refiner is currrently progressing through field installations of property predictors across seven
refineries.
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INTRODUCTION

Commercial property predictors (aka. “soft sensors”, “virtual analyzers”) based on neural networks
were introduced in two 1996 papers [1,2].  A property predictor is a single-output neural network
model that is trained on a large set of process and lab data.  It is implemented in a field on-line module
to replace or supplement an existing analyzer or provide continuous feedback to the operator or a
control application.

Crude switch property predictors [3,4,5,6] are quite different, as they are based on high fidelity
physical models.  The model is called GCC (Generalized Cutpoint Calculation).  The technology is
also coined by the name “crude switch” because of its ability to provide property calculations through
crude switches.

This paper presents the neural network property predictors in the next six sections.  The final four
sections discuss the crude switch property predictor.  The ultimate intent is to combine the two
approaches.  Use GCC for crude switches.  Use the empirical models to model and correct the GCC
mismatch against lab data, taking into account secondary factors.

WHEN IS A PROPERTY PREDICTOR LIKELY TO WORK?

In a nutshell, empirical property predictors, whether constructed using neural networks or first
principle models, will work on applications where there is a significant temperature profile in the
tower.  Most distillation columns in refining and petrochemicals are of that category.

The reason for this is the models use temperature information as a primary input to the correlation.
Changes in the property being predicted must be reflected in changing measured temperatures.  An
example of a column that does not lend itself to inference models is a C3 splitter, which has basically
the same temperature throughout the entire tower.  Overhead C3 or bottoms C3= cannot be inferred
from temperature measurements.

The second requirement for a successful property predictor is that the tower operation must exhibit
significant changes in the property and or significant changes in the tower variables to achieve a
constant property.  In other words, there must be information about how the tower operates in the data
used to build the model.  If the tower runs consistently at the same point and with the same operational
settings, then an empirical property predictor is not feasible.  This is actually a moot point, however,
since such an operation does not call for a property predictor in the first place.

BUILDING A PROPERTY PREDICTOR MODEL

This section uses a field example of a fractionator kerosene 90% point property predictor.  This
property predictor is currently operational in a refinery in eastern Canada.

Data Collection

Property predictors are modeled from historical process and lab data.  The process data may come
from a data historian or an information system, it may come from a SCADA package historian, or it
may be made up of sets of data that were periodically downloaded from a DCS historian. The lab data
are a time-stamped dataset that may come from a lab system or an information system.
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Data collection amounts to gathering the field and lab data for a period of representative process
operation wherein the process moved over the range for which the property predictor will be valid.  It
is imperative that the data include periods of steady-state behavior, since the property predictor model
is a quasi-steady-state* model.

Typically data collection is an iterative exercise, where a first dataset is modeled and then more data
are collected to improve the accuracy or range of the property predictor that results.

Data normally arrive in a disorganized flat file format similar to that shown in Figure 1.

Format

The format step transforms the flat file of data into a spreadsheet format for editing.

Formatting does not change the data file in any way, it merely reorganizes it so that it can be edited in
an efficient and user-friendly way.

The formatted data are shown in Figure 2.

Preprocess

Preprocess is the data editing step.  The engineer examines the data file, removes bad data (such as
process upset or shutdown data), filters the data, interpolates through periods of missing data, and
introduces transforms (e.g., takes the log of a composition).  During this step it is preferable to view
the data graphically as shown in Figure 3.

Model

The modeling step trains the neural network on the preprocessed data.  During training the engineer
usually monitors the training error and the test error to watch for convergence.  Training windows for
the kerosene 90% point model are shown in Figure 4.

For modeling the data are divided into three sets: the training set, the test set, and the validation set.
The validation set is saved away and not used for training or testing.  The training set is the set over
which the backpropagation algorithm is exercised.  The test set is used periodically to determine the
accuracy of the model on data that it was not trained on.  When train error and test error are minimized
the neural network parameters are saved and become the “model”.  The model is then verified by
executing it over the verification set and noting how well the soft sensor output matches the analysis
measurement

Analyze

The main purpose of this step is to check the model, to see if the inputs that were determined to be
important during training make engineering sense.  The sensitivities of the model inputs are examined
graphically or in table form as shown in Figure 5.
__________________
*The term “quasi-steady-state” is used to indicate a steady-state model with dynamically synchronized inputs (i.e., delays
on the inputs).
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During the analyze step inputs that do not contribute to the model can be removed and the model step
repeated.  By this procedure complex models having dozens of inputs can be pared down to simpler,
more meaningful models with only a few inputs.

MARATHON ASHLAND ADVANCED CONTROL PROGRAM

The use of property predictor models for quality control is an integral part of Marathon Ashland
Petroleum’s (MAP) advanced process control strategy.  Starting in 1994 MAP has installed over 50
property predictors and expects to install more than 200 in our seven-refinery system.  Figure 6 lists
some of the property predictors that have been installed.

Why Neural Networks?

From a user’s perspective the technology is irrelevant.  MAP’s goal is to use a technology that is
accurate, low cost, has good analysis speed, and is easy to deploy and maintain.  For most refinery
applications neural networks meet this need.  An additional benefit is the model development process
improves process understanding.

It is MAP’s experience that the accuracy of a property predictor is usually limited by the accuracy of
the refinery control lab.  Typically the standard deviation of error of the property predictor will be less
than 1.5 times the standard deviation of error of the lab test method, and will frequently approach the
standard deviation of error of the lab.  For example, if the standard deviation of error of a 90% point
distillation lab method is 5°F, the standard deviation of error of the property predictor should fall
between 5°F and 7.5°F.  If an appropriate model bias update routine is used average error will be zero.

The time required for an experienced engineer to develop and install a property predictor model will
range between a few days for a straight forward model (most models) to two to four weeks for an
unusual or difficult application.  The time to update a model can be under a day depending on the
extent of the changes.  If the models are done in volume the expected installed cost should be under
$30,000/model.

The dynamic response of a property predictor is very similar to the dominant process inputs to the
model, which in a refinery model are typically temperatures.  MAP typically executes the models on
30 to 60 second cycles, although there is no reason cycle time couldn’t be pushed under 5 seconds.
Property predictors are superior to process analyzers in closed loop control because of their fast update
speeds and good dynamic response (read “no deadtime”).

MAP has used property predictors as indicators, as inputs to single loop (PID) controllers, and as
inputs to multivariable controllers from Aspen (DMC) and Honeywell (RMPCT).  When a neural
network model is used with a linear controller you should make sure the model response in reasonably
linear over the range of interest.

Keys to Success:

Excellent process knowledge is the single most important requirement to develop a successful property
predictor.  Empirical modeling tools such as neural networks will find relationships between variables
that may or may not have engineering merit.  The engineer must determine whether the relationship is
real and whether it should be included in a final model.  For example MAP has found that stream
rundown temperatures are almost always related to product endpoint; this is not an input we would
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include in an online model.  In general, the most successful models have the fewest number of inputs
consistent with good accuracy.

Obviously lots of good quality process and lab data is required.  MAP has had data historians installed
in all the refineries for several years.  The data used to train a model should cover all normal process
operations; it is recommend that a minimum of one year of data be used to train a model.  If sufficient
data is not available initially a model is built with what is available and later updated when new data
becomes available.

A bias update routine is recommended to correct for unmeasured disturbances and meter drift.

Finally, property predictors and process analyzers should be monitored for accuracy.  Standard
statistical process control tools will work very well.

CRUDE SWITCH PROPERTY PREDICTOR

The crude switch technology was developed by Y. Zak Friedman of Petrocontrol [3] as a unique
approach to multi-draw fractionator inferential properties.  Fundamentally, the thermal capacitance of
the fractionation system is significantly less than its material capacitance.  Thus, during a disturbance,
such as a crude switch, the tower may be out of material balance for hours depending upon the
magnitude of the disturbance.  But the energy balance reacts more quickly – in minutes – and can be
used to detect the upset, calculate the shift in the overall TBP curve, and calculate the resulting
changes in product qualities.  The technology works as follows:

Naphtha cutpoint calculation

The column top temperature is indicative of overhead product EFV (Equilibrium Flash Vaporization)
endpoint (dew point).  GCC applies standard API methods to first correct the top temperature
measurement for partial pressure and then convert from EFV to cutpoint TBP.

Flash zone vapor flow calculation from heat balance

Flash zone vapor flow is calculated, not measured.  This is one of the important advantages of this
method because during upsets the column often operates off mass balance, and the only precise way to
measure vapor flow is by heat balance.  Moreover, timing of the heat balance calculation is nearly
perfect in the sense that it is in phase with crude volatility, i.e., as lighter crude enters the column with
higher vapor load, the cooling load immediately increases.

Flash zone cutpoint calculation

The flash zone temperature is indicative of flash zone vapor EFV endpoint.  GCC applies standard API
methods to first correct the flash zone temperature measurement for partial pressure and then convert
from EFV to cutpoint TBP.  The conversion technique is the same as the one for naphtha cutpoint
calculation.

Crude TBP slope calculation

The model initially assumes a linear boiling curve between naphtha and flash zone cutpoints.
Nonlinearities are then estimated from the column temperature profile.  The correction of TBP curve
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nonlinearities is beneficial for cokers and visbreakers, but usually not on crude fractionators, as most
crude oils do have a straight line boiling curve.

Sidestream distillation qualities

With the TBP curve reconstructed, front and back cutpoints of all side-streams become known.  All
distillation qualities are calculated as a function of front and back cuts, and to a lesser extent of
internal reflux.

Internal reflux calculation

For cooling load distribution (pumparound) effects the model performs heat balances to compute
liquid and vapor flows on critical trays.  Constraints such as flooding or weeping are inferred from that
data.

CRUDE SWITCH EXAMPLE

An example trend of key variables during a crude switch is shown in Figures 7 and 8.  Figure 7 shows
minute by minute prediction of crude TBP slope, as well as throughput and sidestream flows
(parameter FLIQ is a sum of the sidestream flows).  The slope has changed from 5.5 to 5.0 ºC/%,
indicating a significant switch from heavy to light crude, and throughput was reduced by 15% to
permit this operation.  Figure 8 shows how well the product qualities were kept during the switch.
Initially all cutpoints dipped, because of physical limits of how quickly the furnace coil outlet
temperature and other controllers can move.  The bulk of crude switch is over in 40 minutes, and
steady state is reached in two hours.  Note that the steady state property changes are due to new
processing orders associated with the new crude.

NEURAL NETWORK CONTRIBUTION TO THE TECHNOLOGY

The neural network system is used during the learning phase to parameterize the crude switch property
predictor thermodynamic equations to fit the column application using plant data and engineering
judgement.  The nonlinear TBP curve corrections from the neural network fit all column temperature
measurements and become an integral part of the learning phase.  The two technologies are thus
combined to produce the property predictor model that will be implemented on-line.  This off-line
exercise is illustrated in the top portion of Figure 9.

The on-line executable reads plant data as inputs and calculates the properties, as illustrated in the
bottom portion of Figure 9.  Typical properties are 90% point, flash point, etc.  When a density
analyzer is available on one of the sidestreams the model can also predict cold properties: pour, cloud
and freeze points.

The ultimate use of physical - neural predictors is to provide continuous feedback, in the form of
control variables, to a Model Predictive Control (MPC) application that controls the product
properties.  The heat balance approach renders the inferential control variables dynamically accurate
during an upset, making MPC dynamics simple and easy to tune.  Upon a disturbance, the MPC
controller reaches its correct manipulated variable positions in minutes, smoothly and quickly
countering any process upset.
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In comparison to the heat balance approach, inferences based on flow measurements are slow and
often can exhibit an exaggerated inverse response (see Figure 10).  To act on the poor inference
response behavior, the MPC must be significantly de-tuned, to the point of losing the ability to
respond to crude switches or other major disturbances.  The physical - neural property predictors
permit MPC tuning about five times faster than with flow measured inferences.

The use and fit of the complete column temperature profile, as opposed to only two temperatures, has
advantages.  First, it permits detection of TBP curves of any general shape. This makes the neural -
physical approach easily applicable to any fractionator:  crude, coker, FCC, visbreaker or
hydrocracker.  Second, fitting of many temperatures increases the robustness of the model.  The fitting
process identifies outlier temperature readings, and disregards them in the inferential formulae.  To the
extent that draw temperatures exhibit dynamic lags, the neural network easily identifies and accounts
for the added dynamic complexity.

The neural – physical inferential technology is implemented as a parameterization of a commercial
software package [7].  The significance of this fact is that no custom code needs to be developed or
maintained.

CRUDE SWITCH PROPERTY PREDICTOR APPLICATION BENEFITS

Crude units benefit significantly from reduction of the crude switch transition time.  With neural -
physical predictors supporting MPC crude switches take 1.5 to 2 hours instead of 6 to 8 hours.
Dynamic disturbances to the process are reduced from 15-20 °F to 5-10 °F.  The limiting factor on this
improvement is not model accuracy; it is the response time of column temperature controllers.

These benefits are quite significant for refineries where diverse sources of crude are processed in a
single facility.  There are also benefits for crude units where multiple feedstocks are held in multiple
tanks with unknown mixtures/stratifications, which cause continuous slow changes in crude quality.
Under such circumstances it is difficult for the operator to act on lab data and keep product properties
at targets without good dynamic inferences.

Cokers mainly benefit from keeping product qualities under control during drum switches.  Without
good quality control the properties can deviate substantially from targets, causing damage or upsets in
downstream equipment.  For example, very heavy naphtha may damage reformer catalyst.  With
physical – neural property feedback for closed-loop control, the product draws are completely
synchronized with the drum switch disturbances and the common error of drawing excess light
product and emptying the column is virtually eliminated.

FCC’s can be disturbed by changes of feed.  For example adding coker gasoil, vacuum resid or
changing from sweet to sour feed.  Such changes result not only in upsets to the FCC reactor but also
in shifts of yields.  The physical – neural property feedback acts quickly to allow column conditions to
be reset by MPC to keep product properties steady during and after the transients.

Hydrocrackers recycle material heavier than diesel back to the reactor, and thus mistakes in controlling
the diesel cut are costly.  Recycling diesel to the reactor wastes energy, hydrogen, and consumes
reactor capacity.  Sometimes diesel range material is intentionally recycled, and then the kerosene cut
becomes of major importance.  Thus the key to maintaining high unit effectiveness is correct
fractionator cutpoint control.  When the hydrocracker is on blocked operation, with feed or operating
mode changing frequently, accurate inferences assume even more importance.
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Last but not least, the object of advanced control is to operate the equipment near constraints.  To
accomplish operation near constraints, MPC’s constantly change process conditions: taking throughput
up or down, pressures, compressors, refluxes, etc.  Under these “self inflicted” disturbances the
fractionator is never at steady-state.  However, those up and down steps become counterproductive if
product properties cannot be held constant during the perpetual transient.  Responsive inferential
predictors are mandatory if any form of constraint control is employed on a fractionator.

CAN A REFINER DERIVE THE SAME BENEFIT FROM ON-STREAM
PROCESS ANALYZERS?

When an analyzer is available it should be used.  When a property predictor is also available and the
two trend together it gives the operator a degree of comfort to let the advanced control take aggressive
steps when necessary.  But an analyzer does not replace the capability of dynamically accurate
inferences.  All of the conditions stated in the previous section require quick response in minutes,
which analyzers simply cannot produce.  Responsive inferential calculations provide the only way to
accomplish high performance closed-loop control.

In addition to the operator comfort factor, the analyzer data is used as a predictor model input similar
to column temperatures.  The long dynamic response of the analyzer is not a problem for the neural
network system.  The analyzer dynamics are identified during the learning phase and are accounted for
in the prediction.  Analyzers are known to occasionally fail, and upon such failures the predictor
model detects the lack of fit, flags the problem for the operator, and continues to provide accurate
feedback to the MPC.
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Figure 1.  Data in Flat File Format

Figure 2.  Data Formatted Into Spreadsheet
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Figure 3.  Plotted Data

Figure 4.  Training Results
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Figure 5.  Sensitivities Report and Plot Screen
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Figure  6.  Property Predictor Installations at Marathon-Ashland
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Figure 7.  Crude TBP Slope Prediction in a Switch

TBP slope

Figure 8.  Crude Switch Predictions Used for Closed-Loop Control During a Switch
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Figure  9.  Neural - Physical Crude Switch Property Predictor Architecture
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