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A dvanced process control (APC) makes money by max-
imizing a key process variable (usually throughput) and
pushing plant equipment to its limits. At the same time,

product quality targets are maintained. This is critical. As Fig.
1 illustrates, pushing equipment to its limits without control-
ling product qualities forces the operator into a counter-pro-
ductive giveaway operation. 

Tools on the market can
perform maximization, but
quality control is more prob-
lematic. Quality control must
rely on real-time quality mea-
surement, which is difficult.
Traditionally APC relied on
onstream analyzer measure-
ments, but due to their mea-
suring location, analyzers are
too slow to be useful for syn-
chronizing quality control
with fast-acting constraint
controllers. Also, issues of
cost and reliability impede
the use of analyzers in
closed-loop control. 

In recent years, industry
has started to develop meth-
ods for treating the equip-
ment itself as an “onstream
analyzer,” passing process
measurements through a
mathematical inference
model to produce a product
quality estimate. The con-
cept, illustrated in Fig. 2, is an
inverse simulation problem.
Simulation inputs feed and
product properties and esti-
mates unit conditions for manufacturing those products. Infer-
ence inputs unit conditions and estimates product properties. 

A number of years ago, we came up with inferential
models for distillation columns that are based on scientific

principles.1 The modeling approach involves a short-cut
simulation of a column section, typically a bottom half of the
stripping section or a top half of the rectifying section (Fig.
3). Hence, the name of the model: general distillation short-
cut (GDS). 

GDS works by fitting a bottom (or top) column compo-
sition that would best agree with column measurements.
That is fairly easy to accomplish with binary distillation. The
novelty of GDS is that by looking at a number of tray tem-

peratures it is equipped to
address multicomponent dis-
tillation.

Table 1 is an example
GDS model reading two tem-
peratures to come up with
three equations, permitting
composition inference of a
product containing three
components. The model
employs three first princi-
ples: bubble point, section
separation “Colburn ratios”
and mass balance. GDS relies
on Colburn’s formulae for
distillation column section
performance,2 describing the
ratio between tray composi-
tion and bottom (or top) com-
position as a function of com-
ponent volatility (K value),
internal reflux and number
of trays in the section. These
formulae provide a way to
interpret tray temperature
measurements correctly, tak-
ing into account the effects of
pressure, reflux and multi-
component environment. 

In terms of complexity,
Table 1 equation coefficients

are obtained by nonlinear calculations, but the resulting equa-
tions are linear, allowing once-through calculations with no
convergence issues. That makes GDS very suitable for online
closed-loop work. Perhaps the most complex GDS calculation

First-principles distillation
inference models for product
quality prediction
Modeling approach involves a short-cut simulation of a column section

Fig. 1. Why apply inferential control?
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Table 1. Example bottom section model

Three bottom composition unknowns: 
Benzene, toluene, xylene (XB1, XB2, XB3)

Three linear equations:

• Bottom bubble point equation:
�(KBi * XBi ) = 1 KBi = YBi /XBi at bottom conditions

• Section separation equation (Colburn ratios):
�(Ri * XBi ) - 1 Ri = YT 7i /XBi = F (i, T7, P, L/V )

T 7 = Tray 7 temperature
Y 7i = Tray 7 vapor composition

• Mass balance equation:
�(XBi ) = 1



involves heat balances to estimate internal reflux of column sec-
tions needed for calculating separation parameters.

Since the initial GDS publication,1 many GDS inferences
have been implemented. Last year we took stock and reported
performance of these models.3 Experience indicates that where
tray temperature measurements are available, and where we have
reliable data for calculating internal reflux, the inference mod-
els are excellent. When measurement data are imprecise and we
are forced to make assumptions, the models might drift over
time—though they could still be useful for closed-loop control. 

During presentation of our paper last year, two questions were
asked: 

1. “Empirical models are gaining popularity because they are
inexpensive to set up, for example, as a spreadsheet regression
model. Are there reasons why they should not be used for dis-
tillation processes?”

2. “GDS seems successful in dealing with common refin-
ery columns, separating components to typical purities of 0.1
to 5%. What about high-purity columns, separating products to
ppm levels? Would GDS successfully handle that problem?” 

Back then, time allotted for discussion did not permit answer-
ing any of those questions, nor were there easy answers. Now
this article attempts to answer both questions in the detail that
they deserve. Regarding empirical versus scientific models, the
article will provide arguments in favor of the latter. Regarding
superfractionator inferences, we had the chance to work on a
benzene, toluene, and xylene (BTX) separation unit where
product specifications are around 200 ppm (Fig. 4). This arti-
cle relays the benzene tower experience. Amazingly, it appears
that whereas the GDS models were probably successful in pre-
dicting benzene column product contamination, the lab test pre-

cision was insufficient for validating the models. 

Why not empirical models? This section explains the difficulties
of applying empirical regression to infer distillation column
product purities. There is no need to discriminate between
neural net versus simple regression models, because both rely
on Gaussian statistics, and the empirical modeling issues are all
related to Gaussian theory limitations. We are not generally
against statistical models, especially for equipment where first-
principles knowledge does not exist. But in distillation, there
are several strikes against empirical models. 

Regression requires independent inputs. As shown in
Fig. 2, inference models input flow, temperature and pressure
measurements, and output estimated product properties. Gaus-
sian theory requires that all inputs be independent; however, that
is not feasible. Temperatures, pressures and flows are related
in several ways: mass balances, heat balances and equilibrium
equations. Ignoring these relations makes the modeling process
theoretically incorrect. A more correct statistical approach
would involve Bayesian theory, which takes into account a pri-
ori knowledge of dependence among input variables. Of course
that a priori knowledge brings us back to the first principles of
distillation. 

Savvy empirical models practitioners have tried to circum-
vent the problem of dependent input variables. For example, in
a distillation column where typically all temperatures trend up
and down together, people have tried taking one temperature as
the key input, while expressing the other temperatures as dif-
ferences from that key value. That is a step in the right direc-
tion. But in the end, it is impractical to consider all of the a pri-
ori relations. 
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Fig. 2. The inferential control concept is an inverse simulation problem.
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Fig. 3. The GDS approach involves a short-cut simulation of a column section.
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Fig. 5. Three of the data show a value of zero ppm, a level that is simply not
feasible for such a column.
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Fig. 4. The benzene column had tight product specifications.
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What then happens to models that use dependent variables?
They have incorrect coefficients and, hence, would drift upon
changes in process conditions. 

Empirical models require large volumes of lab data. Sta-
tistical regression requires hundreds of laboratory data and
that poses a problem. A fair percentage of daily lab data are
biased and reliable process data are obtainable only by test-runs.
During a test-run, the unit is kept at steady state for several hours.
Then samples are drawn by careful procedure—in properly
sealed sample bottles—taken to the lab without delay and
tested immediately in the presence of the process engineer. 

There is no hope that the quantity of lab data needed for
regression would come from high-quality test runs, and empir-
ical model developers would have to rely on imprecise every-
day lab data. Imprecise because it permits occasional spike con-
tamination, sampling during process changes, inappropriate
sampling procedures and long delays between sampling and test-
ing. Fig. 5 is an example of the spread in daily lab data taken
on our benzene column. The lab results for toluene contami-
nation vary between 0 to 200 ppm, but we will show later that
the process itself was well behaved during that time, with prod-
uct impurity actually varying between 50 and 100 ppm. We con-
clude that the standard deviation of error in this set of lab data
is about 30 ppm, and furthermore, about 5% of the data are com-
pletely wrong. That assessment is supported by the fact that three
of the data show a value of 0 ppm, a level that is simply not fea-
sible for such a column.

Can this lab data still provide the basis for a useful model?
That might be possible, if the error is normally distributed
without bias. Model developers often assume that those lab data
that do not fit their correlation are wrong. They label those data
“outliers”, removing them from the original set, thus obtaining

excellent fit, only to find out later that regression fitting does
not guarantee future prediction. How many outliers are accept-
able? Eliminating just a few points from a large set of random
data could entirely alter the regression formulae. Can we pos-
sibly delete over 1% of data from a set and still call this data
reliable? What about 5%?

No, is the logical answer. Data should be deleted from a set
only with evidence that the point in question is erroneous. In
that respect, first-principles models provide a mechanism for
identifying erroneous data. Developing first-principles models
is done without regard to the lab data and often before lab
data are collected. Trending the uncalibrated model against
lab data provides a powerful tool. While the uncalibrated infer-
ence model may not agree with the lab, the two should surely
trend together. Fig. 6 shows a trend of an inference model ver-
sus the lab data of Fig. 5. This model was calibrated by adjust-
ing only one parameter—tray efficiency—and only for the
purpose of bringing the lab data and model to the same scale.
Perhaps one does not yet believe the model to the extent of
throwing away all of the many outliers, but we can certainly label
as suspect those lab results that have gone much up or down
without a process reason for exhibiting such behavior.

Empirical models must identify a large number of coef-
ficients. Scientific models incorporate model gains inherently,
and the calibration procedure amounts to adjusting one or two
parameters. Examples are tray efficiency and weight in a
weighted average formula. The effect of signal-to-noise ratio
on the calibration procedure is minimal. 

Empirical models, on the other hand, must identify at least
one gain coefficient associated with every measurement. That
is a problem because normal day-to-day operation may not
provide enough movement in the data to give meaningful infor-
mation. Large enough process moves endanger product purity
and cannot often be permitted. When data movement is too
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Fig. 6. This model was calibrated by adjusting only one parameter: tray
efficiency.
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Fig. 7. These data were used to calibrate the model, i.e., determine the
number of theoretical trays in the section
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Fig. 8. Selecting hexane as the main aliphatic contaminant leads to model
imperfections.

0.00

0.05

0.10

0.15

0.20

0.25

He
xa

ne
 in

 b
en

xe
ne

Three months

Inference
Lab

Fig. 9. While this model may not show much improvement over Fig. 6, it is a
better model in a number of respects.
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small, the regression would simply model noise patterns. 
First-principles models provide the means for checking

instrument errors. The sister problem of erroneous lab data
is erroneous instrument data. Instrument errors occur due to poor
calibration, partial plugging of orifice meters, improper instal-
lation, incorrect meter range and, finally, also computer inter-
face errors. Inference models developed from erroneous instru-
ment data would necessarily be weak. Eventually instrument
problems are identified and corrected. What would happen to
a regression model then? It would have to be redeveloped, of
course, but from what data? The old data sets with erroneous
readings cannot be used. Assuming lab tests are carried out daily,
creating a new set of hundreds of lab data would take many
months, during which time the APC would be off.

We conclude that before starting inferential model devel-
opment it would be prudent to survey all input measurements
and identify all problems. The best way to accomplish that is
via employing first-principles knowledge—testing the readings
against mass balance, heat balance and equilibrium equations.
If those readings cannot be reconciled against basic thermo-
dynamic laws, they cannot be correct. There is an obvious
conflict here because people choose the empirical approach to
avoid the more time-consuming first-principles models, only
to find out that the use of first principles is unavoidable, if one
desires to identify erroneous data sets. 

There is no replacement for process engineering. And what
if the measurement set is inadequate? Suppose a key mea-
surement is missing or is in the wrong location? To obtain a good
model, the measurement set ought to “have the inferential
information in it.” A first-principles modeler would identify an
insufficient set of inputs at the outset by a simple sensitivity
study. The modeling effort would then be halted until the miss-
ing measurement is installed. The empirical modeler would go
through model development and the problem would only be
found at the time of model validation. At that time, he or she
would have to employ first principles to analyze the problem,
wait for the measurement to be installed and then wait months
until a quantity of lab data is available. 

Ability to survive process modifications. During unit
turnarounds, distillation columns are often modified by replac-
ing trays, cleaning condensers or reboilers, etc. Any inferential
model would need to be recalibrated upon column equipment
modification. First-principles models might require equation
coefficient changes, but empirical models would be turned off
for several months until a meaningful set of lab data is accu-
mulated and the model redeveloped from scratch.

Benzene column. Having experienced success in develop-
ing first-principles inferential models for “run of the mill”
refinery applications,3 we next tried the more challenging high-

performance benzene-toluene separation column shown in Fig.
4. This is a high reflux column with many separation stages
packed in five beds, separating products down to ppm level. The
top bed is a “pickling” section, removing light boiling aliphat-
ics from benzene. Benzene is drawn as a sidestream below the
section whereas the top distillate, containing most of the C6
aliphatics, is circulated back to an upstream aromatics extrac-
tor. The desire is to minimize this costly recycle subject to a
0.25% maximum aliphatics in benzene target. Presently the oper-
ation is rather conservative, keeping the level of aliphatics in
benzene to about 0.1%. 

The next two beds form a rectifying section between the feed
and benzene draw, and their task is to separate toluene from ben-
zene, leaving a pure benzene sidestream. The lower two beds
below the feed point form a stripping section, stripping benzene
out of toluene to keep the bottoms essentially free of benzene.
Toluene and xylene in the bottom stream are separated in a
downstream column, not addressed by this article. Targets for
toluene in benzene, as well as benzene in toluene, are 200
ppm, whereas actual operation applies a very high reflux,
enough to keep both impurities at about 80 ppm. There is an
incentive to cut reboiler heat duty and control product qualities
more precisely to avoid giveaways. 

Besides energy savings, there is also an operating flexibil-
ity issue. The benzene tower is difficult to run because of the
tight dual specifications of toluene in benzene and benzene in
toluene. 

Operators make substantial effort to keep the aromatics
reformer as well as extractor running steady without any change
of conditions, and in so doing operating flexibility is lost.
There is money to be gained by changing reformer and extrac-
tor conditions to match the economics of the day.

Pickling section model. The pickling model works by first infer-
ring top composition, and then applying the Colburn ratio for-
mulae to estimate the aliphatics contamination of benzene.
Ideally, distillate composition inference would be obtained at
overhead accumulator conditions, where the effect of a lighter
component is the most pronounced. However, accumulator
pressure control is accomplished by inert gas, which obscures
the partial pressure of hydrocarbons, thus eliminating use of an
accumulator thermodynamic equilibrium equation. 

The next best option is to write an equilibrium equation
between benzene and aliphatics at the top of the column. This
raises two questions. First, what exactly are the aliphatics?
Second, is the inert gas soluble in the reflux, thus affecting the
top partial pressure? Regarding the former question, the model
conservatively assumes normal hexane. Normal hexane, being
the highest boiling aliphatic component, would give the high-
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Fig. 10. This trend shows the model does not deteriorate over time.
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Fig. 11. An initial attempt was made to calibrate a stripping section GDS model
by adjusting the number of trays.
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est aliphatic contamination estimate. As for inert gas, the model
assumes no solubility of the gas in reflux, though that require-
ment is not rigid, and the solubility equation could be added if
needed to improve model accuracy. 

Fig. 7 shows a three-month trend of aliphatics in benzene con-
tamination. These data were used to calibrate the model, i.e.,
determine the number of theoretical trays in the section. Fig. 8
shows model performance three months later without addi-
tional calibration. While the lab data contains improbable
points, we must assume that most of the data are correct. It would
appear that selecting hexane as the main aliphatic contaminant
leads to model imperfections. The two trends do follow each
other though occasionally they deviate. Considering model
imperfections, our goal of minimizing recycle can only be par-
tially met. Model inaccuracies prevent us from aiming at the
0.25% contamination limit, but they do permit an operating tar-
get of 0.15%, which would cut recycle by 33%.

Rectifying section model. Our rectifying model relies first
on calculating the toluene content at a pivot point about two-
thirds down the rectifying section, where Fig. 4 shows a tem-
perature point. Once that composition is known, the model
goes on to estimate the side-draw toluene contamination from
a Colburn relation between the pivot and side-draw points. 

Obtaining a pair of temperature—pressure measurements at
the pivot point was difficult. There is no pressure measurement
at the pivot point, and we are forced to extrapolate from pres-
sure drop across the first rectifying bed. There is also no pres-
sure point at the side-draw location, but fortunately, knowledge
that the side-draw contains essentially pure benzene permits cal-
culating side-draw pressure from side-draw temperature. That
helps with pressure extrapolation, making calculating toluene
content at the pivot point possible. 

At that pivot point there are only two components: benzene
and toluene. Once the pair of temperature—pressure mea-
surements is established, the composition can be calculated. To
be precise there is also a small amount of hexane, but the hex-
ane partial pressure is so small that its influence on the calcu-
lation is negligible. Following toluene calculation at the pivot
point, the model estimates toluene contamination in benzene
using a Colburn ratio between toluene at the pivot point versus
side-draw point. 

As discussed previously, Fig. 6 shows a preliminary cali-
bration of the model against lab data by adjusting the equiva-
lent number of theoretical trays in the section. We see that at
the beginning of the three-month calibration period, the model
reads generally above the lab; toward the end of the period, the
model reads lower than the lab. The calibrated number of trays
for the section was 7.8, which appears too low. Typically such
signs indicate that one or more of the input readings are biased,

and we came to the conclusion that probably the representative
rectifying section temperature was reading too low. 

Fig. 9 shows a recalibrated model against lab data for the
three-month period. A bias of 1.2°C was applied to the tem-
perature reading and the number of section trays increased to
10. While this Fig. 9 model may not show much improvement
over Fig. 6, it is a better model in a number of respects: 

• Number of rectifying section trays is more believable
• Model reading matches the main cluster of lab results bet-

ter throughout the period
• Pivot point composition is more stable. 
Fig. 10 shows trends of model against later lab data without

further calibration, confirming that the model does not deteri-
orate over time. 

What can explain the success of this model? Until now it has
been known that distillation inference models at ppm levels are
notoriously unreliable. The key to this success is our ability to
calculate the pivot point composition with reasonable accuracy.
In our case, toluene concentration at the pivot point is about 5%.
Considering that the model applies extrapolation to calculate
pivot point pressure, and the temperature is biased, the likely
pivot point toluene content precision would be about ± 1%, or
20% imprecision. The Colburn ratio is about 1,000, and one can
argue that uncertainty in the number of theoretical stages, i.e.,
how tray efficiency changes with operation, introduces another
error of about ± 20%. Taking into account both errors, the
expected prediction repeatability is about ± 30% (square root
of the sum of error squares is 28%), probably the best that has
been achieved for high-performance fractionators. In fact, this
repeatability is better than the lab data that was used to calibrate
tray efficiency and temperature bias.

Stripping section model. As is well known, applying two tem-
perature-based inference models in closed loop, one for recti-
fying, the other for stripping, is problematic. The rectifying
model determines how much benzene is to be drawn, the rest
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Fig. 12. The test data exhibit a better fit than the calibration data.
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being C7+ to be removed with the bottoms. The stripping
model prescribes how much material is to be evaporated from
the bottom and how much would be permitted to flow down to
the bottom as liquid. Thus, both models take actions that dic-
tate the bottoms flow. Small disagreements are inevitable and
would cause competition between the two models and closed-
loop instabilities. To avoid model competition, we intended to
control the column to a bottom model that would rely not on
column temperatures but rather on predictions of the rectify-
ing model and stripper L /V. Such a model would not compete
against the rectifying model. 

But how would one create essentially a regression model from
the imprecise lab data? We resorted to first developing a GDS
model for the stripper, then regressing a nontemperature-based
bottom model from readings of the GDS models rather than lab
data. However, the GDS attempts were not successful. Fig. 11
shows our initial attempt to calibrate a stripping section GDS
model by adjusting the number of trays. We concluded that one
or more of the inputs are erroneous in an unpredictable way, had
to abandon the attempt at a GDS model and decided to simply
control the reboiler to a constant section L /V. In the meantime,
a three-month test was in progress, and all models were tested
for ability to fit an unknown set without further calibration. 

Afterwards, we were faced with Fig. 12, trending the ben-
zene in toluene combination model against lab results. It points
to an unusual phenomenon: the test data exhibit a better fit than
calibration data. This has forced us to reconsider our previous
conclusion about the input data being erroneous. It appears that
the benzene in toluene lab data were substantially unreliable.
The bottom GDS model itself, though there is no yardstick to
validate it, is possibly not bad. However, at this stage there is
no decision about whether to use a bottom model or a simpler
L /V control variable. �
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