Petronas Reformer paper October 2007

> H.K. Lim Y. Zak Friedman S.Y. Nam

> > **Petrocontrol**

Simplified reformer configuration

Petrocontrol

The reformer is a large producer of hydrogen

Difficult reaction, promoted by low pressureNC6 reaction not very effective in semi-
regenerative units,~20% conversionCCR units (low P)~50% conversionNC7 converts better,40 - 80+% conversionNC8 better yet,70 - 95+% conversion

Cracking side reaction → + →

Un-dehydrocyclized, low octane components, are cracked

Aromatics condensation > Coke

Coke gradually accumulates on the catalyst surface

Working with high ratio H2 circulation to tilt the balance against coking

The reaction is endothermic

Petrocontrol

Main reactor controls

Petrocontrol

Reactor control

- Control octane by changing WAIT
 - (weighted average reactor inlet temperature)
 - Keep all inlets the same, except as needed to alleviate constraints
- Control catalyst coking rate by manipulating hydrogen recycle ratio
 - Keep the coking rate within the regenerator capacity
- Regenerator reliability problem
 - Frequent regenerator trips may dictate temporary throughput cuts

Manipulated variables

- Reformer feed flow
 - Maximize feed subject to reactor and NHT throughput constraints.
- Reactor inlet temperatures
 - Handles for controlling reactor severity
- Recycle compressor suction valve
 - Handle for controlling the hydrogen recycle ratio

Control variables – 1

- Octane number calculation
 - Octane inference is the main CV for controlling the reformate octane
- Coke on catalyst laydown calculation
 - Coke laydown inference may become an active constraint upon regenerator trip
- Reactor inlet H2/HC mole ratio
 - Normally the H2/HC ratio is set at 1.5,
 though it should be increase if there is a coke laydown problem

Control variables – 2

- Throughput hydraulic constraints
- Recycle compressor constraints
- Reactor temperature profile CVs
 - Profile is to be respected subject to furnace constraints
- Furnace constrain CVs
- Certain NHT constraints
 - In rare situations the upstream naphtha
 hydrotreater may impose throughput
 limits on the reformer

Control variables – 3

- Hydrogen purge
 - Half way through the project economic drives changed. The reformer is now operated solely for the purpose of supplying hydrogen
 - We added a hydrogen purge constraint to keep the purge low

This control relies on knowledge of octane and rate of coking

- Octane measurement (or in our case inference) is a must
 - Keep catalyst coking rate within regenerator capacity
 - Steady octane operation improves yield
- Coking rate inference is good to have
 - Otherwise we must operate at a conservative hydrogen ratio
 - Affects unit efficiency and capacity

What affects octane?

- Feed boiling point
 - Conversion increases with molecule size
- PNA (paraffin naphthene aromatic)
 - Aromatics ride through, they already have high octane
 - Naphthenes convert at 100% to high octane aromatics, but that conversion requires high reactor temperature
- H2 recycle
 - Partial pressure effect is minor

What affects coke make?

- WAIT
 - Coke make increases with reactor temperature, especially in the last reactor
- H2 recycle
 - Partial pressure effect is major

Inference of feed boiling point

- Ideally feed boiling point should be inferred on the upstream crude unit
 - Not possible at Melaka because there are several feed sources
 - Inference is based on debutanizer bottom conditions, corrected for C4 and C5 separation

Inference of feed PNA

- Ideally feed PNA is inferred from
 - Feed boiling range
 - Reactor conditions
 - Feed density
- But the feed density analyzer is not installed yet, and the model assumes a constant PNA distribution
- Quality of octane inference is acceptable but not great

Octane trend at Melaka

Octane trend at another location, incorporating density measurement

Coke deposit trend [Kg/Hr]

% coke on catalyst

How this application makes money?

- At "normal" economic situation
 - Maximize feed at constant octane, considering reactor and regenerator constraints
- At current depressed economics
 - Minimize feed at constant octane to provide the needed H2 supply while keeping H2 purge at minimum
- A feed reduction of 5% was observed

Conclusions

- Reforming is a sensitive high temperature catalytic process with many constraints
- APC of the reformer reactor requires reasonable inferences of
 - Reformate octane number
 - Catalyst coke deposit rate
- APC engineers must adjust applications for the economics of the day