LOR Crude unit 1 APC March 2012

Laurent Ferrari Sean Goodhart Barry Rutter Zak Friedman

Agenda

- Process APC description and scope
- Multivariable predictive controller
- Inferential models
- Issues with Inferential 'trust' versus analyzer readings and Lab
- Energy on CDU and APC projects

LOR CDU1 APC scope

APC considerations

- CDU is the first refinery unit and correctly splitting the crude oil at that stage is a must for a better overall refinery performance.
- Hence CDU APC is lucrative. It works via
 - <u>Inferential models</u>, estimating the many product qualities (distillation and cold properties).
 - <u>MVPC</u>, pushing the unit continuously against plant constraints and product specifications.
- Quality inferences are key to successful APC. They must perform well at all times:
 - Whatever the crude slate or type
 - Whatever the type of spec to run with

Inferential model methodology

- A <u>calculation</u> based on "field measurements" such as flows, pressures, temperature.
 - These calculations are based on thermodynamics first principles
 - A TBP (true boiling point) curve of the crude is estimated from column conditions
 - Internal reflux flows, including the most important over-flash flows are also estimated
 - From that information the model calculates all the different product properties (Flash, 5%, 95%, etc.)

Estimate the crude TBP curve

LOR inferences

Inference versus analyzer

- Analysers are slow by nature, not giving the right speed of results for fast control actions when needed.
- Also during a specification product transition, the analyzer takes time to line up to the new product.
 - Operators do not believe the analyser as it takes 5 hours to switch properly (change of measurement method requires a switch on the analyser)
 - They wait for a Lab value to come ... which takes time as well ...
 - The inferential is there at all time. If it generally agrees with the lab it becomes quite useful

Inference versus analyzer trend 1

9

Inference versus analyzer trend 2

CDU APC strategy

- Control product qualities to targets given by the planers, in order to optimally feed downstream units
- Push the feed rate up to:
 - Requested production target
 - Approach but do not exceed unit constraints
- Reduce the time of crude switches
- Handle the different production modes ('specialities' for Kerosene)

Benefits

- First of all, <u>a high</u>
 <u>operator acceptance</u>
 <u>and trust with a</u>
 <u>typical service factor</u>
 <u>over 85%, up to 99%</u>
- Financial benefits > 6
 M€/y (due to higher distillate recovery)

After the project

• We often speak about successful APC project and how long they can last 'alive'...

• The APC project cannot capture all the APC potential benefits and continuous improvement is a must.

After the project improvement

- HSR Flash point control improved over time:
 - Standard deviation reduced by a factor of 4.
 - Benefits: 90k\$/m

Energy optimization

- The trade-offs among throughput, yields and fuel consumption are studied off line to establish energy related targets
 - Preheat system flow splits
 - Pumparounds heat duty splits
 - Heater outlet temperature
 - Stripping steam ratios
- APC drives the plant towards these targets.

Heater control

- The large CDU heater must be stabilized and optimized or else entire APC objective is in jeopardy.
- Once that is accomplished we desire to minimize furnace excess air to environmental constraints.
 - Improvement of the Fuel gas network
 - Improvement of the Heater Outlet Temperature control
 - Improvement of the heater flue Gas O₂ control

Furnace COT control

A first step of better usage of energy on the heater: stabilize heater operation (leading to better product separation)

Furnace stack O2 control

The second step is to optimise the furnace efficiency using a stack O_2 control. The benefits:195k\$/y.

• Previous improvement already stabilise stack O₂ (green curve).

Now the O₂ control is made available to further improvements and energy benefits.

Conclusions

- This is APC at its best
 - Controlling product properties at targets
 - Controlling internal reflux at reasonable targets
 - Keeping the unit within constraints and if that is not possible – cut throughput
 - Reducing the chance of incidents by handling crude switches smoothly
- TOTAL estimates the CDU APC benefits at > 6 million Euro/annum